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ABSTRACT

The proklem of supersconic and hypersonic flow past blunt bodies at
small angles of attack is considered. Two-dimensional asymmetric as

well as three-dimensional flow is analyzed.

The method of analysis is an inverse one, that is, the shock-wave
shape and free stream conditions are known, and the corresponding bedy
shape and flow field are to be determined. A semi-analytical, semi-
numerical solution to the full inviscid equations of motion is cbtained
by expanding the stream function and density in double McLaurin serics
in powers of distance from the shock-wave axis of symmetry and powers of
the shock-wave angle of attack. These expansions bring about a separs-
tion of variables that reduces the problem to numerical integration of
ordinary differential equations for the power-series coefficients. The
integration can be accomplished only bystruncating the series. This
truncation may be performed after keeping any desired number of terms
in the series about the shock symmetry-axis. Only first-order terms

in shock-wave angle of attack are retained.

Soluticns at zero angle of attack are obtained as a special case
of the general problem. Results at zero angle are obtained Tor shock
waves that are portions of circles, parabolas, spheres, and paraboloids
of revolution at a free stream Mach number, M , of infinity and ratio
of specific heats, 7y , of 1.4. The first three truncations are carried
out for the parabolic and spherical shock, whereas the first four
truncations are calculated for the circular and paraboloidal shock. 1In
all cases the stagnation-point density is obtained to five-significant-
figure accuracy in two truncaticns. Standoff distance is obtained to
four-plaée accuracy in three truncations. Convergence away from the
axis of symmetry is not so rapid. Body shapes out to the sonic point
converge in three truncations for the two-dimensional cases. However,
axisymmetric bedy shapes and both two-dimensional and axisymmetric scnic
line positions and surface pressure distributions out to the sonic point

are not converged in four truncations, but are very close to being so.




Comparison with results obtained using Van Dyke's and Garabedian's
numerical solutions indicates that the method under consideraticn is

more accurate than the Van Dyke method.

The first three truncaticns are calculated for parabolic and parab-
0loidal shceck waves at small angle of attack and infinite free stream
Mach number. The specific-heat ratio, ¥ , takes on the values 1.k,
1.2, 1.1, and 1.05. For all cases, the streamline that wets the body
rasses through the gchock wave slightly above the point where the shock
wave is normal, and consequently does not possess maximum entropy.
Although these results provide a counter example to the conjecturc that
any isolated convex body in a supersonic stream is wetted by the stream-
line of maximum entropy, the stagnation and meximum-entropy streamlines
are very close to each other, thus suggesting that the conjecture may
be a good practical approximation. Indications are that, in tLhe
Newtonian limit ( M=o , 3= 1), the spnjecture is true for the

shock shapes considered.

A symmetrical shock wave at angle of attack is produced by a body
that is asymmetric to the shock axis of Symmetry. However, a conic
section may be fitted to the converged body shape out to the sonic point.
This is done for the third-truncation body that produces a parabolic
shock at angle of attack of lOO. The body is closely approximated by
a prolate ellipse at angle of attack of 14.2°. Thus, for the two-
dimensional case, the shock wave is seen to rotate more slowly than
the body as angle of attack is imposed. The same result is true for

the third-truncation body in the three-dimensional case.

- iii -
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I. INTRODUCTION

For more than a decade, theoreticians interested in high-speed
gasdynamics have been seeking a solution to the problem of supersonic
and hypersonic flow past a blunt body that combines the advantages of
minimum computational difficulty with maximum accuracy of results.
Physically, the problem under consideration is the following. A blunt-
nosed configuration is traveling through a uniform gas at a flight Mach
number greater than unity. A detached shock wave forms ahead of the
body at a position depending on the body shape, flight direction and
Mach number, and certain physical properties of the gas. The gas ahead
of the shock wave is unaffected by the preserce of the bedy. It is
desired to determine the flow properties (e.g., velocity, pressure,
density) in the region between the shock and the body. In general,
this region may be divided into two subrggions, depending on the magni-
tude of the local flow Mach number with‘;espect to unity. The locus of
points at which the local flow Mach number is unity is called the sonic
line. If one considers steady flow re%ative to the body and denotes

by M and M, the free stream and local Mach numbers respectively,

£
then an example of the above situation is here depicted.

Shock Wave

Sonic Line (Mﬂ = 1)

Uniform

StrfEE___,.
_ ¢(body)




thematically, the problem considered is governed by highly non-
linear differential equations in a domain pessessing a free boundary
along which initial values may be determined if the boundary shape and
free stream conditions are known. The governing equatinns are of
elliptic type in the subsonic region ( ME < 1 ) and of hyperbolic type
in the supersonic region ( Mﬁ > 1 ). The initial-value problem for
hyperbolic cquations is well posed and yields to solution using the
well-known theory of characteristics. The initial-value problem for
elliptic equations is, however, poorly posed, and much of the effort
expended on the blunt-body problem has been confined to its sclution in
the subsonic region. Attempts have been made to solve the problem by
both inverse and direct methods. In the inverse methed, the shape of
the detached shock and the free stream conditions are prescribed, and
the corresponding body shape and flow field are to be determined. In
the direct method, the body shape and free stream conditions are pre-
scribed, and the corresponding shock wave shape and flow field are to
be determined. References [1] and (2] contain detailed reviews of
and extensive references to previous work for plane-symmetric and axi-
symmetric shapes at zero angle cof atté;k, i.e., bodies whose flight

direction is parallel to the body axis of symmetry.

The methods now in popular use for sclving the zero-angle problem
in the entire subsonic region to a high degree of accuracy are numerical
in nature and require the use of high-speed electronic computing machines.
Two such methods are Van Dyke's [3] approach to the inverse problem and
Belotserkovskii's [4] solution to the direct problem. Van Dyke's
analysis essentially reduces the solution of the conservation equations
for steady, inviscid flow of a perfect, non-heat-conducting gas to
numerical integration of two coupled partial differential equations for
the density and stream function. Belotserkovskii, on the other hand, by
assuming a polynomial varistion between the shock and body for certain
flow quantities, reduces the problem to integration of ordinary differ-
ential equations. Practical experience has shown that both of these
methods require a large amount of skill on the part of the numerical

analyst in order to obtain satisfactory solutions for other than simple



body shapes such as spheres or circular cylinders. Hence, even though
these methods yield fairly high accuracy, they possess a moderate amount

of computational difficulty.

In contrast to the zero-angle problem, comparatively little effort
has been expended on the problem of the blunt body at angle of attack
in either the two-dimensional or three-dimensional cases. Both Mangler
[5) and Vaglio-Laurin and Ferri [6] suggest computational methods for
attacking such problems, but neither presents results using the analyses
proposed. They both obtain solutions to the zero-angle inverse problem
by introducing the stream function as an independent variable through a
von Mises transformation. The resulting partial differential equations
are then numerically integrated from the shock to the body using a
marching technique. Mangler suggests an extension of this marching
technique tc the three-dimensional angle-of-attack problem fermulated
in terms of a pair of stream functions. The approach of Vaglio-Laurin
and Ferri to the problem cof the blunt bedy at incidence involves a
first-order perturbation of the flow wvariables about their zero-angle

values. .

Vaglio-Laurin [7) has developed ancther approach to the blunt-body
problem at zero or finite incidence which involves the successive
refinement of an approximate solution by application of the PLK method.
Results for configuraticns at both zero and finite angle of attack

using the analysis are presented in ref.[T7].

The success, however, of Mangler's and Vaglio-Laurin's methods for
the solution of the angle-of-attack problem depends on an assumption
regarding a basic property of asymmetric supersonic flows. The assump-
tion is that the body is covered by the streamline that crosses the
shock at right angles and thus possesses maximum entropy. Mangler has
conjectured that such a condition might be a feature of any flow,
whereas Vaglio-laurin [7, p.19] purportedly has proven this to be true
for two-dimensional asymmetric configurations. However, the proof has
been found to be faulty, and Vaglio-Laurin is in accord with this con-

clusion (private communication).




The analysis that follows yields solutions for two-and three-
dimensional supersonic and hypersonic flow past tlunt bodies at small
angles of incidence. The method is an inverse one, that is, the shock-
wave shape, free stream conditions, and angle of incidence of the shock
wave are known, and the corresponding body and flow field are tc be
obtained. The equaticns of motion are solved using a semi-analytical,
semi-numerical approach which reduces the problem to numerical integra-
tion of ordirnary differential equations. The solution may be carried
to any desired degree of accuracy and requires no extensive numerical
analytical skill. Moreover, no assumption need be uade regarding the
behavior of the maximum-entropy streamline. Its position in the Tlow
is obtained as part of the solution. Results at zero incidence are
obtained as a special case of the general problem. Although the exam-
ples chosen are for specific shock shapes at infinite Mach number and,
in the majority of cases, a specific-heat ratio of 1.4, the analysis
is performed for the general case. The %ethod of extension to higher

angles is obvious and introduces no new difficulties.




II. ANALYSIS

A. Coordinate System

The ccordinate system adopted is that developed by Van Dyke [3].
The detached shock wave is described by a conic section so that it is
a portion of a hyperboloid of revolution, paraboloid, prolate ellipsoid,
sphere, or oblate ellipsoid. In cylindrical polar coordinates originat-

ing from its vertex (Fig. 1), any such shock has the equation

r° = 2R x - Bx® (1)
where Rs is the nose radius of the shock and B is a parameter char-
acterizing the eccentricity of the conic section. B 1is negative for
hyperboloids, zero for paraboloids, positive for ellipsoids, and unity

for a sphere. >

An orthogonal coordinate system ( &,n ) that contains the shock

wave as a coordinate surface is defined by

~

X_ 10 Ja - -8+ B (2a)
RS B
r
R— = &7 (2b)
S
Special cases are
g; =41 + £2- qe) for the parabola (B = 0) (2¢)
s
-g— =1 -1 - 82 for the circle (B = 1) (2d)
s

The shock wave is described by n =1 .

In this coordinate system, with the azimuthal angle ¢ as the

third orthogonal coordinate, the differential line element ds 1is given

-5 -



by

= h? d§2+ hz dq2+ hi dwd

jo7)
[éo]
I
)

-

1 - Be® C + By

where C =1 - B Here v

C§2+ 2 2 C§2+ r2 2 2.2 .2 2
k I gey = L an®+ vetn” dq;")R

S

plane and 1 for axisymmetric or three-dimensional flow.

(3)

is a geometric parameter, being O for

B. Differential Equations, Initial Conditions, and Method of Solution

Denote by a,LU and P

the velocity, density, and pressure non-

dimensionalized with respect te the free stream speed q, » the free

stream density oL and twice the free stream dynamic pressure
2 po . . <
P, A, s respectively. Then, the equations expressing conservaticn of
w
mass, momentum, and entropy for steady inviscid flow of a perfect, non-

heat-conducting gas having constant specific heats are

V.o(eq) = 0 (ko)

pgVg + Up = 0

d.V(p/o’) = 0

(hb)

(fe)

where y  1s the adiabatic exponent.

BR.o= 1 without loos of generality. Eqo. (ha), (Wb) and

5

(ke) become, in ( &,7,¢ ) coordinates

Woe set

r /_(,£p+ 5] v foid, 2
Y TAR— ; :

L(E*‘l) S5 eu| o+ | (E7) =l oy

~o T I 1 2

i e N
(¢)
2 2
+ CE * W = 0




(5v)

W C§2+ qe w2
+'-§- 2\’ - _— +p =0
TWe a2 ¢ 0
1 - ng C + B 2
plww, +un f—— (v + gwg) + vt —————Hﬁ»(w +qw )| +p =0
v Ct + Ct“+ n° n 14

2
—— p/p )., + Vv
C§d+ ne ¢ 2

C+ B 2
CEBL (pfp?) 4
CE+

Yoy - .
T (p/o )¢ =0 (5¢)

-

Here u,v , and w are the components of q in the £, n , and ¢
dirccticns, and subscripis &, § , and ¢ denote partial differentin-
tion in the usual sense.

Ginee the method of solution varies slightly between the two-and

FIR TN L N TN NPT TR B T (RPN S PRI . y -
hree-dinensionnl cases, deperturs will now be tailinn from o 2oncurrent

treatment.




1. Eiane Flow

Equations (5a) - {5e¢) apply with Vv = w = ga = 0. The first

(centinuity) equation is satisfied by introducing a stream function

defined by
C§2+ 2 C%2+ 2
o= T en sy = [ s oy (6)
1 C + By ¢ i - BE

then the last (entropy) equation simply states that

p=0’t(y) (7)

where the functional fourm of is determined by the boundary conditions
at the shock. Using equation (7) to eliminate the pressure from the

cequntions of motion yields

et 2 yel 2.121 1 2 CBpt 2
4 z e oV =V Ve Yo (Ve t 5V
1 - Bt Jeon CE%+ n 1 - e N
(8a)
o 2 2
¢ Bt CET+ 0 a1
-, - Y == - ¥ - P oy
E7&n E'n o 1-Bg25’” 1~Bg2 1
i 0 2
Ll - \ __I]_ __i Cg L - BE |2 2
= 4+ - - R
4EW’H V'\‘yé-ﬂ wn Ep ‘yn £ cg2+ T]2 oo BT]2 Ve T
(8p)
2 2 y
B L CEr o vl £ 1
- 5 VoV, 5 o] y + = '.E
c+ By > By




Thus far, the attitude of the body with respect to the firecc stream,
or, since we are considering the inverse problem, the angle of the
uniform free stream with the shock axis of symmetry, has not entered
into the mathematical formulation. The angle of attack of the shock
will, however, appear in the boundary conditions and in the explicit
expression for f{y) . These conditions will be derived by employing
McLaurin series expansions about zero angle of attack and retaining
first-order terms in shock angle of attack, € . Setting ¢ equal to

zero recovers the zero-angle conditions.

Moreover, in the angle-of'-attack problem, the position in the flow
ahead of the shock wave of the streamline that wets the body is not
known a priori, but must be obtained as part of the solution. A funda-
mental question in the analysis of hypersonic flows past inclined blunt
bodies concerns the behavior of this streamline. It has been conjecturecd
[5,7] that any isolated convex body in a uniform supersonic stream is
covered by the fluild of maximum entropy in the fiow. This means that
the stagnation streamline must have crossed the bow shock where it is
n ncrmal shock wave. To determine the position of the stagnation strcam-
line in the free stream and thus possibly disprove the conjecture, the
formulution of the angle-of -attack problem requires the introduction of
an additional parameter, & (Pig. 2). The quantity ¢& is a measurc
ol' the distance of the body streamline in the free stream from a given
reference line. This refercnce lire is at angle ¢ to the x-axis and,

X

. . 1
in general, is taken to pass through the point =3 ﬁﬂ =0 .

11

R,‘
B =

However, in the singular case of the parabola ( 0 ), the reference

linc is taken through the focus of the parabola ( = =0 ).

5
5

!
»Jmmiﬂ

1
5 )
( ) are

Values of wu, v, p, p Just behind the shock wave n =

found from the obligue shoek relations (e.g., ref. [8]) in terms of the

angic that the tangent to the bow wave makes with the free stream

direeticen. Exyressing this angle in terms of the slope of Lhe bow wave,
j 2
i e . - o . :
= and € , using eqs.(u),nnd retaiving t'irzt order terms in <

N - Yy H e 3 4 =
tooin the initiand conditions




- (y + 1)M2(1 - ng- 2t V1 - ngl_

(y - l)Mg(l - ng- 2et V1 - ng) + 2() + cg2)
(9a)
- )
w=§+e< B +6> 'q:o(§+€\/l-Bg)
at n =1

and gives Tor the function f(¥)

27M2(l - B~!,;2+ 2eBYBY - (v -1 [:1 + c\y - 2€C\|/<' )]

r(y) = =
y(y + I)Mg{l + C [\'vg ( - By ]}
5 Y
(7=1 )M (1-By°+ 2cBys) + 2 [1+cw2- 2c0y (}—L—é4ﬁy— + %}] :
10a)
g (y+1)M (1-By°+ 2¢yBo)

where M is the free stream Mach number.  For the singular case of a
parabolic sheck wave ( B = 0, C = 1 ), the expressions for p, V, Yoot

1= 1, and for  nre

o]
(¥ + DM (1 -~ 2et)
(y = IMEQ1 - 2e) + 2(1 + rt?)

=

\y=§_+c(6+%-§2/2) ; \yq:p(§+e) at o=l

(9b)




_ oML - 2ey) - (0 - [+ P 2cu(s - & - vP/R)]
7(r + DML + ¥ 2ev(5 + & - v7/2)]

Y
{(7 - DML - 2ey) + 2[1 + §°- 2ey(s + & - ¢2/2>1'} (100)
(r + l)M2(l - 2ey) .

The boundary condition af the tody is

¥y =0 at 75 = 1IN (11)

.

The method of solution essentially consists of separation of
variables in equations (8) - (11) by expanding the dependent variables
in double Mclaurin series about the shock axis of symmetry, & = O ,
and sbout € = 0 . Only first order terms in ¢ are retained. This
leads to ordinary differential equations with corresponding boundary
conditions for unknown functions of 1 which can be solved only by
truncating the series. The resulting equations are readily integrated
by standard numerical methods. The above procedure will now be carricd

out .

Set
3
= (e g (e 1 (g7 o)
2 L ; -
welr (7)) + 0 (E £ (e 0(8")] + () (1on)
Y- . 5 L 6
7:% P = Ban () + g (METH g (n)E T+ 0(E7)
+elgy (D8 v L0ET a ()87 0N+ o) (iav)




The first subscript on the runctions of n is O for the zero angle of
attack nortion of the sclution and 1 {for the angle of attack portion,
and the second subscript indicates the position of the term in its
respective series. The forms of these expansions are readily ascertained

by consideration of the initial conditicns.

Expansions (12a) and (12b) are substituted into the differential
equations (8) and boundary conditions (9) - (11). Equating coefficients
of like powers of ¢ and € resulls in successive problenms for fOO’

T etc. Thus the zero-order problem

00’ oo’ Toi’ 801" Epz
for f and 800 involves two equations which also contain 851 * the

first-order problem for involves four ecuations

Too? €oo? To17 Bo1

which also contain and so forth. The same pattern occurs in Lhe

g02 )
successive equations for the angle-of-attack functions. This "backward
influence' of Bonsl in the n""-order problem is due to the ellipticity
of the differential equations in the subsonic region, and is a mathe-
matical manifestation of the physical fact that disturbances are propa-
gated in all directions in a subsonic flow., This mathematical behavior
myy be conlrasted, for cxample, with that of the equations determining
the coeflicients of the Blasius-series solution to the parabolic

equat ions governing the laminar boundary layer on a blunt body. Sub-
stitution of the Blasius scries inlo the governing differential cquation
and cquating coefficients of like powers results in equations for the
series coefficients which involve only one coefficicent or depend only

cn Jower order coefficients, and hence may be solved successively.

th
We return Lo the problem under consideration. To soclve the n -

. e . )
foor forr e fon PP Bppr oy ot Eop

seme determination must be made of Bona] ° The simplest thing to do

order zero-angle problem tor

s to truancate the series by scetiing Eon+ 1 identically ogual to zero,
1
The resulting equations may then be integrated.
It iz found that the differential equaticns for f and ¢ arec
0o CC

ione for succeeding Lorms fn Lhee zero-ungic

DO e, whoTead Lhc egund

sories are linear. The equitticns for all the angle of attacx functions

2

are linear and contain ccefficients that derend on the zero-angle solution.




Integration is terminated and the body shape determined by the
boundary condition (11). For the angle-cf-attack problem, this condition

also determines & .

To illustrate the procedure, the equations and boundary conditions
for the first and second truncations for a parabolic shock wave at

M=« will be presented.

After inserting series (12a) and (12b) into equations (8a), (8b),
(9b), and (10b), and equating coefficients of like powers of & and € ,
the following differential equations and initiul conditions are obtained.
(Primes indicate differentiation with respect to n . The powers of ¢
and € from whose coefficients the equation results are indicated in

front of each equation).

Differential Equations

a) Zero angle
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b) Angle of attack
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Initial Conditions

a) Zero angle

WO (13¢)
£, e 501 =15 50(1) = I (1be)
%, ¢ gy (1) =0 (15¢)
e2, & £,,(1) =05 £5,(1) =0 (16¢)
b) Angle of attack"
>
e, ¢ f(1)=%+0;: £ (1) = ;3_% (13a)
e g -0 (14a)
e2, « fll(l)’— -3 () =0 (15¢)
5, ¢+ g (1) =0 (16a)
The body condition, eq.(11l), becomes
foo(m)t + 0, (1)t (e eftyolng)e 51, ()e2+ o(eh)] w0l = 0

(17a)

However, is itself a function of ¢ and depends parametrically on

n
b
£ . Expanding qb(g; €) about its zero angle value yields
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n (85 €) = % (8) + enlt) (&) + (D). (18)

Using eq.(18), the functions of N, in eq.(17a) may be expanded as
follows

foch) = Too <<O)> * E”él) o0 \Gm) + 0(%)

f01(% = Toy (“bO)D * E”b o1 <“£0)> + 0(%)

£.5(0) = £, <qé0)> + 0(e)
filny) = 1 ( )> + 0(e)

Eq.(172) then becomes

oo@bO)>g * f01<(o)>§ +0(E%) + e [Ho(”lg )> + ”1(31) foo(‘( )>§
' f116£0)>§2 v ot félGéO))gs ¥ O(Eh)} +0(e%) = 0 (170)

Further expansion of qéo)(g) and nél)(g) about & = O yields

' " a2

A IR G O R RN A ST (19)
' 2

O R A R O (20)
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where
(O) = néo)(o)
né” = nél)(o)
and similar identities hold for the derivatives n(o)|, néo) s nél)l, nél)'.

0)
Thern OO(T]b > may be expanded as

(O)” \
0 (0) ()", , Jo__ 2%, ({0
To0 n - f0060 ) il trT3 E)fooQ‘ >

(0) . (- (0)
with similar expansions holding for fOl<ﬁ 10<5b s fOO T, ,

116b0)> and f‘ ((O))

Tutting these expansions into egq.(17b) yields

) ) [ ) 0 )

+ 2f016éo)>] £3/2 + 0(e") + ¢ {flo Géo)> * [n(()O)‘ fio@é0)>

“ng” 16066(30)>]§ ' [”él) 25o”) 167 87 1i6”)
() ) ] ¢

[ ) - (7 5l + o [ )
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Since this equation must hold for all ¢ and € , equating coefficients

of like powers of & and € yields

oo (08) = o (L)
o)

' fOOGé@) -0 N (210)
D 5 () <o | o)

(0>" ((0)> .\ 2f01600)> (21c)

e ( ) ' f11600)> ) *loené )) =0 (214)
(1)" (<0)> (21e)

Eq.(1llke) is the condition used to terminate the integration in any
truncation and determines qéo) s, the value of n at the nose of the
zero-angle body. Since qéo) is thus determined, eq.(1l3e) is the
condition that determines & , i.e., this condition is satisfied for
only one value of & in the initial-condition eq.(13d) and differential

eqs.(13b), (14b), (15b), and (16b).
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Egs.(2la) - (21e), along with eqs.(18), (19), and (20), determine

AW
the body shape. Eq.(2la) yields qéO’ = 0 . This indicates that the
zero-angle body is represented by an even series in powers of & . The

same conclusion could have been reached from symmetry considerations.
Eq.{21b) yields qéL) =0, i,e., there is no perturbation to the zero-

angle body at its nose to this order of analysis. Egs.(2lc) and (21d)

()" (1)

o (0)

1 and their derivatives evaluated at 5 . Eq.(2le) yields
(_L)"

%) =

the body is represented by an odd series in powers of ¢ .

determine 1 , in terms of the values of the functions of

0 , which indicates that the angle-of-attack perturbation to

Thus, i1t Is seen that the condition W(nb) = 0 determines not

only the body shape, but also the unknown quantity & .

Egs.(13a) - (13e), and (1ka) - (lhe) comprise the first-truncation
problem. Egs.(13a), (1ka), (13c), (14c), and (1be) define the zero-
angle problem, whereas egs.(13b), (1kbv), (13d), (14d), and (13e) deflne
the angle of attack problem. Note that the zero-angle differential
equations (13a) and (1ha) are nonlinear and that eq.(lla) contains lop
as previously mentioned. Setting € equal to zero allows the zero-
angle problem to be solved. Setting f01, fll , and 8o, equal to
zcro in eqs.(13b) and (14b), and utilizing the zero-angle results,
initial condition eqs.(13d) and (14d), and body-condition eq.(13e)
allows solution of the first-truncation equations for the angle-of -

attack problem.

Similar remarks apply to the second-truncation problem defined by
egs.(13a) - (13e), (1ka) - (1lbe), (15a) - (1%e), and (16a) - (1Ge), wilh
functions having a second subscript of 1 being retained and those
having a second subscript of 2 being set equal to zero. Hipher-order

problems are solved in like manner.

2. Three-Dimensional Flow

In contrast to the case of plane flow, the continuity equation is
satisfied by ‘he introduction of & pair cf stream funciions, vy and

Y., according tc
=4




od = VW, X W, (22)

The use of such a pair of functions in this manner was introduced by

Clebsch [9].

The entropy-conservation equation, (5e), then states that

p_7 = g(‘l'l,‘l/2) (25)

where the functional form of g 1is to be determined from the boundary

conditions at the shock wave.
Using equations (22) and (23) in equations (5b), (5¢), and (5d)

yiclds the following equations for Wl,we ,and p @
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2.2 (y+1) ; P - !
00 [ v et 7 2 i) = o (2ic)

Before the initial conditions are presented, a few words are in
order regerding the stream functions Wl and wg . These functions
possess a degree of arbitrariness in that it is only required that the
surfaces wl(g,q,¢) = constant and wg(ﬁ,n,w) = constant be stream
surfaces, that is, surfaces in which streamlines are imbedded. The
intersecticns of these surfaces are then streamlines. If one considers
a uniform stream for simplicity, there are any number of pairs of
surfaces which can be set up to satisfy this requirement. For example,
one such pair consists of orthogonal or skewed planes. Another is
concentric circular cylinders and orthogonal planes through the common
axis of the cylinders. 1If, however, one considers axisymmetric flow in
a (&,n,9¢) coordinate system and chooses for Wz the azimuthal an;ular
coordinate ¢ , wl ig the Tamiliar Stokes stream function. Herlice,
since we are considering small angle of attack, it is reasonable to

perturb w2 about ¢ and Wl about the Stokes function.

Consider Fig.2. Depicted there is & shock weve that is a paraboloid
of' revolution at angle ¢ to the uniform free stream. A line al angle
¢ Lhrough a known point on the x-axis (e.g., central point of a hyper-
bolcid, focus of a paraboloid, center of a sphere, point of intersection
of major and minor axes of an ellipsoid) is chosen as reference from
which the distance to the body strcamline shead of the shock is measurcd.
Concentric circular cylinders about vl = 0 and planes of angle
7 = constant  are chusen for the stream surtaces ahead of' the shock
{see section A-A, Fig.2). With ¥, and Wg defined in Lhis manner,

the initial conditicns are
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_ (y + l)ME(l - B§2- 2et N1 - B§2 cos )
(y - DM (1 - Bt%- 2et /1 - BE® cos @)+ 2(1 + CE7)

/ 2
\LI1 - ECI/E 4 €§ c0s ('{,v (..._].'__]%_—B.é__ + E\> (25b)

/- 2
w2=(p-ssin(p<_}._:—B§_.+6> (25c)

./ 5
ot V1 - Bt? [g + e cos ¢<1 P —%— >} (254)

<
)
1

2 2
_ etp sin g _ el 1l - B¢ A
wEn ‘ [(l Bt) ( 5 + B 4 ———

:
Vi - el

- (1w cez)J (25€)

at n =1,

and the function g(wl,w2) is
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-2 \/E\i;l € cos \1/2 ,/l - EB\;rl}

[ V1 - 2By

-~ {(7-1) {1 + (1-5)1 2y, - 2 /2y, € cos ¢2<———§——1~ + 6)})
J1I - 2By

7(7441)1\42{1 + (1-R) [Equ- 2 ‘/2\&1 € Ccos \ng(—————-——-—l 8)]}

B

JT - 2By,
[(7-1)1\42{1 - B [2‘{11- = ‘/2\111 € CcOs \U2<-—-—l—3———: + SDJ
- VAT ¢ con v, /T I )
T - 2By
=)

+ 2{1 + (1-13)[2\1;1- 2 2y, € cos ¢2<—-B———’ +

V/1-2BY,
7+l Mgfl B[2w1-2 \/2\1/ € cos \J/( >} 2\1{1 € ¢ns \[/? ]-213\4'1]

(26n)

For the special case of a paraboloidal shock (B = O, C = 1} the shift

in reference line previously mentioned on page § results in

(y + 1M (1 - 2¢k cos )

= (251)
(y - 1):42(1 - 2ct cos @) +2(1 + g?)
. . .2
V., = E2/2 4 ct cos o 2ot x f) (25¢)
1 2 y




vy =g - SERL (5 e k- 6)2) (25n)
\"’ln = pg[g 1 € cos go(iz— +5 - §2/2>] (251)
vy, = L (8 -} - B2 (25.)

E(Wl,we) ==<%7M2(1 - 22y, € cos Wz) - (7-1) [l + 2y,

- 2/B¥) € cos ¥, (5 + 5 - wl)D
7(7+1)M2[ 1+ay-2 JE%I € cos ¥, (b + 5 - Wlﬂ

y

r

(7-1)M2(1-2\/2wl € cos ¥)+ 2 L1+2¢1- 2\/2%, € cos Uy (5 + 5 - )
X o
(r+1IM° (1 - 2‘/2w1 € cos wg)
A(26b)
The boundary condition at the hody is
V=0 At m= gy (21)

The method of soluticn is essentially the same as for plane flow.
Geparate variables by setting

oo, 6 8,
.-Ol(r.}; F L)k +0(g )

e e o[£ ¢ 1, M f 087 o) | < 0() (e
J




h, (1)
Yy =@ + € sin (p[:%——- + hll( Ve + hle(n‘;§3+ egs)] + O(GE)
(28b)
- 4 .6
;ﬁ P = goyln) + g01(”)52+ Bop(M)E + (")

e con 0 [l + ey (ME% g, 0Es o(e"] +o()  (280)

Again, after one substitutes these expansions into egs.(2hk) - (27) and
equates coefficients of like powers of ¢ and € , the series must be
truncated to obtain a solution. As in the plane-flow case, the equations
for fOO and gOO are nonlinear and succeeding equations for the cther
unknown functions of 1 are linear, with the equations [or Lhe augle-of-
attack functions having variable coefficients depending on the zero-
angle golution, The body boundary condition, eq.(27), is applied in a
similar manner as outlined for plane flow with the medification that the
body shape is now given by

(0)

(@5 €) =m0 (8) + ¢ cos on{t) (8) (180)

b

3. Sonic lLines and Surface Pressure Distributions

In addition to body shapes, sonic lines and surface pressure dis-
tributions out to the sonic line were calculated to investipate conver-
gence of the series expansions away from the axis. The mathemalical

details of obtaining these quantities will now be presented.

The energy-conservalion equation for a perfect pas,

2

2 (29)

oirg |
l\)l s’or\lo

=2
P U A
2 7-1

8DII S'UI
+

where barred quantities represent dimensional physical gquaniities,




becomes, after suiteble nondimensionalization

Mi __2 [2 + (y = l)M2 o i} (30)

P
r-d oy M p

where M, is the local Mach number of the flow in the shock layer. On
the sonic line, the local Mach number is unity. Furthermore, the mass-
and entropy-conservation equations yield p = o7 £(¥) (plane flow), and
p=o E(Wl,w2) (three-dimensional flow). Putting this information
into eq.(30) yields

2+ (y - P
ond T

L (v = 0) (31a)

P+

2+ (- apnf o7 v (v = 1) (31b)

2N by vy) -2

Introduction of t or § in Lerms of the series expansions for V, ¥y

and W2 yields equations which, for a given truncation, are algebraic
expressions for £ in terms of functions of n . Jelection of values
of 1} between the shock and body allcws corresponding values of £ Lo

be calculated, thus determining points on the sonic line.

The equations for surface pressure dilstributions are obtained by

utilizing

Y -
p=p (V) (v =0) (7)
p= " ik, (v - 1) (23)
St te ' .
Agaln, substituting appropriate expansions fer , £ , and - yields
p(E,n: €) . Use of known pairs of values of £ and 7 on the body
allows the pregsure ‘o be calcuia‘ted in any given truncation.




III. RESULTS AND DISCUSSION

A. Zero Angle of Attack

To examine the convergence of the series expansions for the stream
functions and density, zero~angle-of-attack restlts will be presented
initially. From consideraticon of the simplificaticns brought about
in the equations and boundary conditions, the free stream Mach number
is taken to be infinite and the shock shape to be a portion of a circle,
parabecla, sphere and paraboloid cof revolution. The specific heat ratio,

y , is takern to be 1.k,

The first four truncations have been carried out for the circular
and paraboloidal shock,whihethe first three truncations have been cal-
culated for the spherical and parabolic shock waves. The numerical
integration of the ordinary differential equations for the unknown
functions of mn was accomplished using a fourth-order Runge-Kutta-Giil
method [10]. The computations were carried\éut on an IBM 7090 electronic
computing machine at Lockheed Missiles and Space Company, Sunnyvale,
California. Machine times of two to three minutes were required for

~

each case.

Results on and away from the axis are compared with numerical
solutions obtained using the inverse method developed by Van Dyke [1]
and refined by Fuller [11]. Convergence on the axis is extremely rapid,
three truncations giving the stagnation-point density correct to five
significant figures and the standoff distance to four significant figures
as determined by comparison of the parabolic shock solution with
Garabedian's results [12]. Convergence off the axis is somewhat less
rapid, as is to be expected from the form df the expansions. The term
convergence is used here in the sense that, whenever two successive
truncations yield values for a physical quantity identical in three or
more significant figures, it is said that the quantity has converged.
Nothing can be said about convergence of the assumed series In the strict
mathematical sense, since the functional form of the series coefficients

is not explicitly known.
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1. Plane Flow

Results for the circular and parabolic shock waves are given in
Figures 3 - 6 and 11. Figures 3 - 5 apply to the circular shock. In
Figure 3, the convergence of the reduced stream function u/é , and
the density function, (¥-1)p/(7+1) , along the axis ( £ =0 ) is
examined and results of one, two, three, and four truncations compared
with numerical solutions. As previously mentioned, convergence is
extremely rapid for both the density and stream function, the differ-
ences between the second, third and fourth truncations being indiscern-
ible to the scale of the plot. The standolf distance referred to the
shock nose radius, A/Rs , 1s determined to be 0.1895 by the second
truncation and 0.1899 by the third and fourth truncations. This con-
verged result is smaller than the value of 0.1912 determined by NASA
case MDF*, and larger than the value of 0.1880 determined by NASA case
34 (these values for standoff distance are obtained using that value
of n at which f,. goes to zero, along with eq. (24)). The method
of solution for NASA case MDF contains a smoothing process [11] whereas
that for case 34 does not, As pointed out in ref. [11], the smoothing
process has the effect of increasing standoff distance. Comparison of
the two NASA results with the converged value leads to the conclusion
that the NASA data are not sufficiently accurate to be used as an
absolute basis of comparison. This point will be further borne oul as

other physical quantities are considered.

Fipure U compares sonic lines and body shapes as determined from
the second, third, and fourth truncations with the results ot NASA case
MDF. 'he sonic line determined by the first truncation is a circle
having a radius of 1.593 and center at x = 1, r = 0 , while the first,
truncation body determined by the numerical integration is the point
x =1, r=0 . Note that the first-truncation sonic line lies ahead
of the shock. This result is obtained by analytic continuation of the

solution upstream of the shock wave and is, of course, physically

* NASA results for cases MDF, MDD, RS1 and R3L courtesy of Ames
Aeronauticel laboaratory (unpubljshed).
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unrealizable since the flow ahead of the shock is uniform at iunfinite
Mach number. Comparison of the body shapes determined by the third and
fourth truncations indicates convergence beyond the sonic point to a
shape other than the NASA result. The sonic line, however, has not
converged and higher truncations would be required to determine its

exact localion.

Figure 5 compares the surface pressure distribution determined by
the second, third, and fourth truncations with the NAGA results. Con-
vergence has been obtained for about two-thirds of the distance to the
sonic point. The converged portion of the curve and the NASA results
are parallel, but do not coincide due to the discrepancy in body position.
Higher truncations are required to obtain convergence all the way to the
sonic point, but the trend indicates that the converged values will

probably nct parallel the NASA data for the entire distance.

Figures 6 and 11 apply to a parabolic shock. The results of one,
two, and three truncations for the reduced stream function and density
function alcng the axis arc compared with both NASA results and
Garabedian's solution [12] in Figure 6. Results for the circular shock
have indicated that the NASA data lack sufficient accuracy to be uscd
as an absolute bagsis for comparison and that the method under congider-
ation possesscs internal consistency. The question of convergence to
the correct solution may be answered by comparison with Garabedian's
result for a parabolic shock at infinite free stream Mach number.
Garabedian c¢laims 1/10 of one percent accuracy for his standoff distance
of 0.1851G. The third truncation yields a standoff distance of 0.1851L,
thus indicating at least three and perhaps four significant figure

accuracy for this guantity.

Figure 11 compares body shape and sonic lines as determined by
one, two, and three truncaticns with NASA results. For this casc, com-
paricorn indicates near convergence of the third truncation for both

quantities.




2. Axisymmetric Flow

Results for spherical and parsbcocloidal shock waves arc given in
Figures 7 - 10C. igure 7 depicts the variation of the reduced stream
function, 2¢/§2 , and density function along the axis of symmetry
between a spherical shock and the body. Agein, the convergence is
extremely rapid, three truncations giving a standoff distance, A/RS )
of 0.0998 compared with the NASA results of 0.0981 {(unsmoothed) and

0.0993 (smoothed).

Figures 8 - 10 apply to a paraboloidal shock wave. Figure 8 ylelds
a standoff distance of 0.8956 as determined by the second, third, and
fourth truncations. Hence, the standoff distance converges to four

significant figures in only two truncations for this case.

Tigure 9 compares body shapes and sonic lines with a NASA numerical
solution. In the first truncation, both body and sonic lines are
n = constant lines, the body being at 17 = 0.8552 and the sonic line
at 7 = 1.0780. The corresponding values of x and r may be obtained
from eqs.(2b) and {2c). Again, the first-truncation sonic line lies
ahcad of lhe shock, this result having been cbtained by analylic con-
tinuation of the sclution upstream of the shock wave. Since the sonic
point on the body has a & coordinate greater than in the case of Lhe
circular shock, neither the body shape nor the sonic line appears con-
verged even in four truncations for this case. lowever, consider the
surface pressure distribullon given in Figure 10. One-dimensional
streambube relations yield the result that, for ¥ = 1.4 , the pressurc
at the sonic point on the body must have the value 0.480. This value is
plotted at the value ot x determined by the intersection of the fourth-
truncation body and sonic line from Figure 9 (asterisk symbol, Figure
10). One sees that this point nearly coincides with the pressurc curve
obtained by applying a Shank's transformation [13] to the lourlh-
truncaticn pressure seriles. The nonlinear Shani's transformation
causes the slowly convergent pressure series to converge more rapidly.
The above agreement indicates near convergence without the necessity

of calculating the f'ifth truncation.
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B. 3Small Angle of Attack

The analysis outlined for the angle-of-attack problem has been
carried out for shock waves that are parabolas (plane flow) and parab-
oloids of revolution {three-dimensional flow). The Tirst three trun-
cations have been calculated for cach shock shape., The free stream Mach
nunber is taken tc be infinite, and ¥ takes on the veclues 1.4, 1.2,
t.1, 1.05. The resulting body shapes, sonic lines, and positions of the
body streamlines at their points of intersection with the shock wave are
shown in Figures 12 and 13 for € = lOO, y = 1.4, where a finite value
of ¢ has been selected for graphical purposes and the error is 0(62)
for purpose of comparison, body shapes and sonic lines for a parabolic
and paraboloidal shock at zero angle are given in Figures 11 and 9
respectively., Computing machine times of five to six minutes per case
were required since the zero-angle tunctions appear as coefficients in
the angle-of-attack equations and hence must be stored in the machine.
Also, in certain cases it was necessary to usc very small step sizes
(e.ge, On = lO_LL ) in order to obtain accurate values for the guantity
& .

Of particular interest in the angle-of-attack problem is whether
or not the streamline that wets the body crosses the shock normally,
thus having maximum entropy. For this to be so, the quantity & (see
Figure 2) must have the value % . The results of the analyses arc

given in Table T,

TABLE T

Values of 5

Parabolic Shock, M= = Paraboloidal Shock, M= «
Y 4
Truncation 1.bL 1.2 1.1 1.05 1.k 1.2 1.1 1.05
1 1518 8417 - - 88.00 37.48 25.79  -1.3M
2 L4838 5935 Lhgih L L99o L5576 L5394 ,5190  .50hk2

2 A8 ho08  Ldd L Lg88 L87Y L950  LL9BL LS00k




For all cases the trend of decreasing & with increasing trunca-
tion is toward a value of & slightly less than % . For the three-
dimensicnal case, a reversal of this trend in higher truncations could
conceivably result in a value of % . However, even if this reversal
took place in two dimensions, a converged value wculd be expected to
lie between the second-and third-truncation values and thus could never
be %'. Hence, the streamline that wets the body passes through the 1
shock wave slightly above the point where it is a normal shock. However,
as the Newtonian limit process ( M » o, ¥ » 1 ) 1s carried out, the
trend is toward a value of % . Hence in this limit, when the parabolic
and paraboloidal shock and body coincide, the body is covered by the

maximum-entropy streamline in both the plane and three-dimensional cases.

Since the shock waves possess symmetry about the x-axis, the
resulting body shapes are asymmetric to this axis. Consideration of
the comparison in Figure 11 of the third-truncation body for the para-
boliec shock at zero angle with the NASA results, and of the resulls for
the circular shock given in Figure 4, lead tc the conclusion that, for
symmelric plane flow at M - « , three truncations yield a nearly con-
verped body out to the sonic peint. Since € is taken as small, it
is reasonable to extend this conclusion Lo include smaell angles of
incidence. With the above facts in mind, and the realization that it
is somewhat impractical Lo talk aboul asymmetric shapes from an experi-
mental or engincering viewpoint, an asttempt was made to find an axis
system in which that portion of the two-dimensional body given by the
third-truncation (Figure 12) out to the sonie points could be closely
approximated by a conic section. An ellipse was fitted by a trial-and-
errcr procedurc in which the positions of the foci and masjor axis werc
varjed until points on the ellipse and third truncation body coincided
to three significant figures (Firure 1L). The ellipse is ziven by the
equat ion §2/0.37 + ;9/0.29 = 1 , where the oririn of the ( X, r ) axes
is at. x = .790, r = - .033 , and the X axis is at angle 14, 20°
measured cicckwise from the free stream direction. Thus, the shock
wave s seen Lo rotate about 'C per cent as fas* ag the body as tie

anrle of attack 1s imposed.




No attempt was made to perform & corresponding fit to the three-
dimensional body determined by the third truncation,since Figure 9
indicates that the body shape out to the soniec point has not converged.
Note, however, that the third-truncation body is closer to the shock in
the ¢ = 7 plane than in the ¢ = O plane. Hence, to this truncation,
the shock wave still must rotate more slowly than the body as angle cf

attack is imposed.



IV, CONCLUSTONS

A semi-analytical, semi-numerical method of analysis has been
developed and successfully applied to the problem of two-znd three-
dimensional hypersonic flow past blunt bodies at small angles of

attack.

Solutions at zero angle of sttack are obtained as a special case
of the general problem. 3tandoff distances are predicted to higher

accuracy than by any other existing method.

For a shock wave that is a parabola or paraboloid of revolution
at anple of incidence to a uniform free stream having infinite Mach
number and ¥ = 1.4 , the streamline that wets the body passes through
the shock wave slightly above the point where it is & normal shock wave.
Hence, the body is not covered by the maximum-entropy streamline in
these cases. In the Newtonian limit ( M= o , ¥ = 1 ), the parabolic
or paraboloidal body is wetted by the maximum-entropy streamline. Tor
a parabolic shock at infinite Mach number, ¥ = 1.4 , the shock wave

rotates more slowly than the body as angle of attack is imposed.
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V. FUTURE RESEARCH

Although trhe analysis presented here is for general Mach number
and shock shape, results nave been obtained only for certain shock
shapes at infinite Mach number., Work is currently in progress to

procram the general problem for the IBM 7090 computer.

Since the results of these calculations in the vieinity of the
sonic line might serve as input data to a characteristic program for
the soluticn of the flow field downstream of the sonic line, possible
means of improving the.convergence of the method in the vicinity of the

sonic line are being explored.

One such possibility involves expanding the stream functions and
density in Taylor series about an arbitrary & = constant line in the
flow. By choosing this arbitrary line close to tae sonic line, one
might expect more rapid convergence for values in this region at a

sacrifice of convergence in the viecinity of the shock axis of symmetry.

Another possible means of improving convergence away from the
shock axis of symmetry is by applying power series expansions to quan-
tities which vary clowly as one moves away from the shock symmetry axis,
thereby reducing the mapgniiude ¢ the coefficients of the hipher order
terms with respect to those of lower order. TFor example, at infinite

Ynch number, ¢ is constant behind the shock, wheresas p/p7 is

s . m 1-
constant on the body. If one considers expanding: the product p p m ,
then m = 1 corresponds to expanding o , whereas m - v/¥-1 corresponds
Lo expanding p/py . Cne might consider expanding for a value of m

which is the averaie of 1 and 7/7-1 . This would then correspond to
a quant ity which varies more slowly as one moves away from the shock

axis of symmetry than either p/p7 on the scck cr p  on the body.

A further possible extensicon of the work is to render it applicable
te hypersonic flow of real pases in egiilibrium and perfect pases in

therma: and chemical ronequilibrium.
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Fig. 1 Representation of Shock Wave
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Fig. 2 Parabolic or Paraboloidal Shock Wave at Angle of Attack
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Fig. 9 Comparison of Body Shapes and Sonic Lines
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